%0 Journal Article
%T On the Crossing Number of K_{2,4}\times S_{n}
K_{2,4}\times S_{n}的交叉数
%A LV Shengxiang
%A
吕胜祥
%J 系统科学与数学
%D 2010
%I
%X Garey and Johnson proved that the problem of determining the crossing number of an arbitrary graph is NP-complete. In this paper, it is proved that the crossing number of the Cartesian product $K_{2,4}\times S_{n}$ is $Z(6,n)+4n.$ For $m\geq 5,$ we conjecture that ${\rm cr}(K_{2,m}\times S_{n})={\rm cr}(K_{2,m,n})+n\lfloor\frac{m}{2}\rfloor\lfloor\frac{m-1}{2}\rfloor.$
%K Crossing number
%K complete bipartite graph
%K cartesian product
交叉数
%K 完全二部图
%K 笛卡尔积图.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=0A43DC84E3D0A1F26C57DA5FF6956627&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=DF92D298D3FF1E6E&sid=0FBB0D015A3E9A88&eid=073C3CF5F13F64FE&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=15