%0 Journal Article %T ON A CONTROL PROBLEM FOR A CLASS OF POPULATION SYSTEMS WITH TIME DELAY AND AGE DISTRIBUTION
一类基于时滞和年龄分布的种群控制问题 %A HE Zerong %A LIU Yan %A
何泽荣 %A 刘炎 %J 系统科学与数学 %D 2010 %I %X An optimal harvesting problem is considered for a class of population models with discrete delay and continuous age distribution, whose state system is described by a partial functional differential equation. The existence of optimal strategy is proved by means of maximizing sequence and Mazur's theorem, and the first-order optimality conditions are derived out via normal cone and adjoint system techniques. Finally by a detailed analysis for the adjoint system, the uniqueness and the characteristic representation of the optimal controller are given. %K Population model %K optimal harvesting %K delay %K age structure %K Euler-Lagrange conditions
种群模型 %K 最优收获 %K 时滞 %K 年龄结构 %K Euler-Lagrange %K 条件. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=25B4F1C9328EABBB444914C68D4E624A&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=CA4FD0336C81A37A&sid=0B0E3CDF024DF7BD&eid=298BF781EBFB0A6D&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=19