%0 Journal Article
%T ON A CONTROL PROBLEM FOR A CLASS OF POPULATION SYSTEMS WITH TIME DELAY AND AGE DISTRIBUTION
一类基于时滞和年龄分布的种群控制问题
%A HE Zerong
%A LIU Yan
%A
何泽荣
%A 刘炎
%J 系统科学与数学
%D 2010
%I
%X An optimal harvesting problem is considered for a class of population models with discrete delay and continuous age distribution, whose state system is described by a partial functional differential equation. The existence of optimal strategy is proved by means of maximizing sequence and Mazur's theorem, and the first-order optimality conditions are derived out via normal cone and adjoint system techniques. Finally by a detailed analysis for the adjoint system, the uniqueness and the characteristic representation of the optimal controller are given.
%K Population model
%K optimal harvesting
%K delay
%K age structure
%K Euler-Lagrange conditions
种群模型
%K 最优收获
%K 时滞
%K 年龄结构
%K Euler-Lagrange
%K 条件.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=25B4F1C9328EABBB444914C68D4E624A&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=CA4FD0336C81A37A&sid=0B0E3CDF024DF7BD&eid=298BF781EBFB0A6D&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=19