%0 Journal Article
%T MONOTONICITY-PRESERVING MULTISTEP RUNGE-KUTTA METHODS
多步Runge-Kutta方法的保单调性
%A Gan Siqing
%A Shi Ke
%A
甘四清
%A 史可
%J 计算数学
%D 2010
%I
%X An important class of ordinary system is that whose solutions satisfy a monotonicity property for a given norm. The system arises from the discretization of the spatial derivatives in the hyperbolic partial differential equations. For these problems, a natural requirement for the numerical solution is the reflection of this monotonicity property, perhaps under certain stepsize restriction. This paper deals with the monotonicity property of multistep Runge-Kutta methods. Sufficient conditions are given for multistep Runge-Kutta methods to be conditional monotonicity preserving and unconditional monotonicity preserving, respectively.
%K 常微分方程初值问题
%K 多步Runge-Kutta
%K 方法
%K 单调性
%K 一般线性方法
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=AE3742473BF5410920C6DE6DDA8D911B&yid=140ECF96957D60B2&vid=9971A5E270697F23&iid=38B194292C032A66&sid=002786F01A86D891&eid=7ABC4505E3960D2B&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=14