%0 Journal Article %T BIQUADRATIC ELEMENT FINITE VOLUME METHOD BASED ON OPTIMAL STRESS POINTS FOR SOLVING POISSON EQUATIONS
解Poisson方程的基于应力佳点的双二次元有限体积法 %A Yu Changhua %A Li Yonghai %A
于长华 %A 李永海 %J 计算数学 %D 2010 %I %X In this paper, a new kind of biquadratic finite volume element method based on optimal stress points is presented for solving poisson equations, choosing trial and test spaces as the biquadratic finite element space and the piecewise constant function space respectively. It is proved that the method has optimal H1 and L2 error estimates. It is also showed the superconvergence of numerical gradients at optimal stress points.Finally, the numerical experiments show the results of theoretical analysis. %K Poisson equations %K biquadratic element %K finite volume method %K optimal stress points %K error estimate
Poisson方程 %K 双二次元 %K 有限体积法 %K 应力佳点 %K 误差估计 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=D50FDF4FEE57AE491B405D881C060349&yid=140ECF96957D60B2&vid=9971A5E270697F23&iid=CA4FD0336C81A37A&sid=6AC2A205FBB0EF23&eid=67969BA850333433&journal_id=0254-7791&journal_name=计算数学&referenced_num=1&reference_num=11