%0 Journal Article %T New materials and devices for preventing catheter-related infections %A Jean-Fran£¿ois Timsit %A Yohann Dubois %A Cl¨¦mence Minet %A Agn¨¨s Bonadona %A Maxime Lugosi %A Claire Ara-Somohano %A Rebecca Hamidfar-Roy %A Carole Schwebel %J Annals of Intensive Care %D 2011 %I Springer %R 10.1186/2110-5820-1-34 %X Central venous catheters (CVCs) are inserted in approximately half of all patients in the intensive care unit (ICU). In Europe, the incidence density of catheter-related bloodstream infections (CR-BSI) ranges from 1 to 3.1 per 1,000 patient-days [1]. CR-BSIs were associated with an attributable mortality of 0% to 11.5% [2] and an additional stay length of 9-12 days [3,4].In contrast to other nosocomial infections, CR-BSI has many device-related risk factors. Consequently, prevention should be possible, provided that rigorous policies are implemented. Specific education and training of healthcare workers in CR-BSI prevention and continuous implementation of unit-based quality-improvement programs are essential. We discuss the potential usefulness of new technical developments and put these into perspective according to available recommendations.Colonization of the catheter occurs via two main pathways: the extraluminal route and the intraluminal route. Colonization of short-term CVCs (< 15-20 days) occurs predominantly from the skin puncture site, whereas colonization of long-term CVCs is usually related to intraluminal bacterial spread from a contaminated hub [5]. In both cases, the source of the micro-organisms is the patient's own commensal skin flora. Accordingly, S. epidermidis is responsible for 40-50% of episodes, followed by S. aureus (10-20%). Gram-negative bloodstream infection, especially Pseudomonas aeruginosa, Stenotrophomonas sp., and Acinetobacter baumannii, are recovered in one-third of cases. Candida sp. are recovered in 3-10% of cases.Biofilm formation on the inner and outer surfaces of the catheter contributes to the development of CR-BSI. A biofilm is a complex structure formed by bacteria that have attached to an artificial surface or dead tissue. Bacterial attachment to the catheter surface begins within 24 hours after catheter insertion. The bacteria proliferate and secrete a polysaccharide matrix, which provides a medium for the attachment of %U http://www.annalsofintensivecare.com/content/1/1/34