%0 Journal Article %T Shifts in human skin and nares microbiota of healthy children and adults %A Julia Oh %A Sean Conlan %A Eric C Polley %A Julia A Segre %A Heidi H Kong %J Genome Medicine %D 2012 %I BioMed Central %R 10.1186/gm378 %X Using 16S-rRNA gene sequencing technology, we characterized and compared the bacterial communities of four body sites in relation to Tanner stage of human development. Body sites sampled included skin sites characteristically involved in AD (antecubital/popliteal fossae), a control skin site (volar forearm), and the nares. Twenty-eight healthy individuals aged from 2 to 40 years were evaluated at the outpatient dermatology clinic in the National Institutes of Health's Clinical Center. Exclusion criteria included the use of systemic antibiotics within 6 months, current/prior chronic skin disorders, asthma, allergic rhinitis, or other chronic medical conditions.Bacterial communities in the nares of children (Tanner developmental stage 1) differed strikingly from adults (Tanner developmental stage 5). Firmicutes (Streptococcaceae), Bacteroidetes, and Proteobacteria (¦Â, ¦Ã) were overrepresented in Tanner 1 compared to Tanner 5 individuals, where Corynebacteriaceae and Propionibacteriaceae predominated. While bacterial communities were significantly different between the two groups in all sites, the most marked microbial shifts were observed in the nares, a site that can harbor pathogenic species, including Staphylococcus aureus and Streptococcus pneumonia.Significant shifts in the microbiota associated with progressive sexual maturation as measured by Tanner staging suggest that puberty-dependent shifts in the skin and nares microbiomes may have significant implications regarding prevention and treatment of pediatric disorders involving microbial pathogens and colonization.Studies of microbial diseases typically focus on individual pathogens as causative agents. Recent insights into the microbial communities inhabiting the human body suggest that pathogenicity can be enhanced or impaired by shifts in bacterial communities and that disturbance in the microbial ecosystem (dysbiosis) can contribute to disease [1]. Genomic sequencing surveys of the normal healthy human skin %U http://genomemedicine.com/content/4/10/77