%0 Journal Article %T Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires %A Catherine T Elliott %A Sarah B Henderson %A Victoria Wan %J Environmental Health %D 2013 %I BioMed Central %R 10.1186/1476-069x-12-11 %X We estimated PM2.5 exposure for populations in administrative health areas using measurements from central monitors. Remote sensing data on fires were used to classify the populations as fire-affected or non-fire-affected, and to identify extreme fire days. Daily counts of salbutamol dispensations between 2003 and 2010 were extracted from the BC PharmaNet database. We estimated rate ratios (RR) and 95% confidence intervals (CIs) for each population during all fire seasons and on extreme fire days, adjusted for temperature, humidity, and temporal trends. Overall effects for fire-affected and non-fire-affected populations were estimated via meta-regression.Fire season PM2.5 was positively associated with salbutamol dispensations in all fire-affected populations, with a meta-regression RR (95% CI) of 1.06 (1.04-1.07) for a 10 ug/m3 increase. Fire season PM2.5 was not significantly associated with salbutamol dispensations in non-fire-affected populations, with a meta-regression RR of 1.00 (0.98-1.01). On extreme fire days PM2.5 was positively associated with salbutamol dispensations in both population types, with a global meta-regression RR of 1.07 (1.04 - 1.09).Salbutamol dispensations were clearly associated with fire-related PM2.5. Significant associations were observed in smaller populations (range: 8,000 to 170,000 persons, median: 26,000) than those reported previously, suggesting that salbutamol dispensations may be a valuable outcome for public health surveillance during fire events.The public health effects of acute environmental exposures are often described as a pyramid, with the rarest outcomes at the peak and the more common outcomes at the base. The rarest outcomes are most severe, while the most common outcomes are the mildest. Many population-based studies focus on the upper part of the pyramid because severe outcomes are typically recorded in administrative databases. However, their rarity makes it challenging to evaluate short-lived exposures with adeq %K Fires %K Smoke %K Air pollution %K Asthma %K Pulmonary disease chronic obstructive %K Epidemiology %U http://www.ehjournal.net/content/12/1/11