%0 Journal Article %T Event-related brain potentials that distinguish false memory for events that occurred only seconds in the past %A Chen Hong %A Voss Joel L %A Guo Chunyan %J Behavioral and Brain Functions %D 2012 %I BioMed Central %R 10.1186/1744-9081-8-36 %X Background False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM) paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP) correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Methods Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Results Two categories of effects were identified that distinguished true from false short-term memory: (1) early semantic priming effects from 300 to 500 ms and (2) later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Conclusion Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory. %K DRM %K False memory %K Short-term memory %K Priming %K ERP %U http://www.behavioralandbrainfunctions.com/content/8/1/36