%0 Journal Article %T On the right n-Engel group elements %A H. Khosravi %J International Journal of Group Theory %D 2012 %I University of Isfahan %X In this paper we study right $n$-Engel group elements. By modifying a group constructed by Newman and Nickel, we construct, for each integer $ngeq 5$, a 2-generator group $G =langle a, brangle$ with the property that $b$ is a right $n$-Engel element but where $[b^k,_n a]$ is of infinite order when $knotin {0, 1}$. %K Engel elements %K right Engel elements %K right n-Engel elements %U http://www.theoryofgroups.ir/?_action=showPDF&article=472&_ob=5e23db65a8dbeb8e6ee80a4114a80593&fileName=full_text.pdf