%0 Journal Article %T Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: Case Report and systematic literature review %A Neelam Giri %A Rees Lee %A Albert Faro %A Charles B Huddleston %A Frances V White %A Blanche P Alter %A Sharon A Savage %J BMC Blood Disorders %D 2011 %I BioMed Central %R 10.1186/1471-2326-11-3 %X In this report, we describe a patient with DC who developed pulmonary fibrosis seven years after HSCT for severe aplastic anemia, and was successfully treated with bilateral lung transplantation. We also performed a systematic literature review to understand the burden of pulmonary disease in patients with DC who did or did not receive an HSCT. Including our patient, we identified 49 DC patients with pulmonary disease (12 after HSCT and 37 without HSCT), and 509 with no reported pulmonary complications.Our current case and literature review indicate that pulmonary morbidity is one of the major contributors to poor quality of life and reduced long-term survival in DC. We suggest that lung transplantation be considered for patients with DC who develop pulmonary fibrosis with no concurrent evidence of multi-organ failure.Dyskeratosis congenita (DC) is a progressive, multi-system, inherited disorder of telomere biology. It is classically diagnosed by the presence of the triad of nail dystrophy, lacy reticular pigmentation, and oral leukoplakia. Patients with DC are at very high risk of bone marrow failure (BMF), squamous cell head and neck or other cancers, leukemia, and myelodysplastic syndrome (MDS), as well as pulmonary fibrosis, liver disease, neurological, ophthalmic, genitourinary, and gastrointestinal abnormalities [1,2].Telomeres, which consist of TTAGGG nucleotide repeats and a protein complex at chromosome ends, are essential for chromosome stability. They are generally very short in individuals with DC [3]. Approximately 60% of persons with DC have an identifiable mutation in one of seven genes important in telomere biology. Inheritance of DC may follow X-linked recessive (DKC1 gene), autosomal dominant (TERC, TERT, or TINF2), or autosomal recessive patterns (NOP10, NHP2, TERT, or TCAB1) [4-10]. BMF is the leading cause of death, accounting for 60-70% of all fatalities [2,11,12]. Hematopoietic stem cell transplantation (HSCT) can correct BMF and other hematol %U http://www.biomedcentral.com/1471-2326/11/3