%0 Journal Article %T The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB %A C. S. de Munck %A A. Lemonsu %A R. Bouzouidja %A V. Masson %J Geoscientific Model Development Discussions %D 2013 %I Copernicus Publications %R 10.5194/gmdd-6-1127-2013 %X The need to prepare cities for climate change adaptation requests the urban modeller community to implement within their models sustainable adaptation strategies to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, a GREENROOF module for TEB (Town Energy Balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module allows one to describe an extensive green roof composed of four functional layers (vegetation ¨C grasses or sedums, substrate, retention/drainage layers and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological and thermal fluxes throughout the substrate and the drainage layers, and the thermal coupling with the structural building envelope. TEB-GREENROOF (v7.3) is therefore able to represent the impact of climate forcings on the functioning of the green roof vegetation and, conversely, the influence of the green roof on the local climate. A calibration exercise to adjust the model to the peculiar hydrological characteristics of the substrates and drainage layers commonly found on green roofs is performed for a case study located in Nancy (France) which consists of an extensive green roof with sedums. Model results for the optimum hydrological calibration show a good dynamics for the substrate water content which is nevertheless under-estimated but without impacting too much the green roof temperatures since they present a good agreement with observations. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB, TEB-BEM. Moreover, the green roof studied for GREENROOF evaluation being a city-widespread type of extensive green roof, the hydrological characteristics derived through the evaluation exercise will be used as the standard configuration to model extensive green roofs at the scale of cities. %U http://www.geosci-model-dev-discuss.net/6/1127/2013/gmdd-6-1127-2013.pdf