%0 Journal Article %T Second Hankel determinant for a class of analytic functions defined by a linear operator %A Aabed Mohammed %A Maslina Darus %J Tamkang Journal of Mathematics %D 2012 %I Tamkang University %R 10.5556/j.tkjm.43.2012.455-462 %X By making use of the linear operator $Theta _m^{lambda ,n} ,,,m in mathbb{N}={1,2,3,ldots}$ and $lambda ,,,n in mathbb{N}_0 = mathbb{N} cup { 0}$ given by the authors, a class of analytic functions $S_m^{lambda ,n}(alpha ,sigma ) ( {| alpha| < pi/2}, ; 0leq sigma <1) $ is introduced. The object of the present paper is to obtain sharp upper bound for functional $ left| {,a_2 a_4 - a_3 ^2 } ight|.$ %K Fekete-Szeg functional %K Hankel determinant %K Positive real functions %K Linear operator. %U http://journals.math.tku.edu.tw/index.php/TKJM/article/view/518