%0 Journal Article %T Pacific climate variability and the possible impact on global surface CO2 flux %A Hideki Okajima %A Michio Kawamiya %J Carbon Balance and Management %D 2011 %I BioMed Central %R 10.1186/1750-0680-6-8 %X Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1.Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.The Pacific Ocean is the largest oceanic domain on Earth and has the greatest impact of all ocean basins on climate variabilities on both a global and regional scale. One of the most dominant climatic phenomena on an interannual time scale is El Nino Southern Oscillation (ENSO). The Pacific ENSO has largest variance along the equator because it is excited by the Bjerknes feedback [1]. For example, the enhanced zonal SST gradient makes the trade winds stronger and the thermocline tilt steeper, and hence the initial zonal SST gradient anomaly is further enhanced. Thus, the anomalous zonal SST gradient, trade winds, and thermocline tilt are closely connected at the equator in such a way that the initial perturbations grow rapidly through this feedback process. As a climatic impact, the zonal and vertical atmospheric circulation, the so-called Walker cell, is strengthened over the equatorial Pacific and brings anomalous high (low) pressure systems to the east (west) of the Pacific, resulting in Peruvian droughts %U http://www.cbmjournal.com/content/6/1/8