%0 Journal Article %T A feeder-free, human plasma-derived hydrogel for maintenance of a human embryonic stem cell phenotype in vitro %A Fiona C Lewis %A Nicholas Bryan %A John A Hunt %J Cell Regeneration %D 2012 %I BioMed Central %R 10.1186/2045-9769-1-6 %X These well established requirements can be overcome and in this study, it will be demonstrated that phenotypic stability of hESCs can be maintained using a novel, human plasma protein-based hydrogel as an extracellular culture matrix without the use of feeder cell co-culture. hESCs were resuspended in human platelet poor plasma (PPP), which was gelled by the addition of calcium containing DMEM-based hESC culture medium. Phenotypic and genomic expression of the pluripotency markers OCT4, NANOG and SOX2 were measured using immunohistochemistry and qRT-PCR respectively. Typical hESC morphology was demonstrated throughout in vitro culture and both viability and phenotypic stability were maintained throughout extended culture, up to 25 passages.PPP-derived hydrogel has demonstrated to be an efficacious alternative to MEF co-culture with its hydrophilicity allowing for this substrate to be delivered via minimally invasive procedures in a liquid phase with polymerization ensuing in situ. Together this provides a novel technique for the study of this unique group of stem cells in either 2D or 3D both in vitro and in vivo.Embryonic stem cells isolated from the inner cell mass of pre-implantation embryos are recognised as the most pluripotent of all stem cells and as a result of their distinctive cellular biology have an indefinite capacity to self-renew and give rise to all cell types within the three germ layers of a developing embryo [1][2]. This unique group of stem cells is therefore able to provide a comparable, manipulative platform to model the early stages of human development. When hESCs are cultured directly on tissue culture polystyrene (TCP) their distinct phenotype is quickly lost with cells undergoing spontaneous differentiation characterised by a change in cell morphology and loss of pluripotency markers, such as OCT4 and NANOG [1,3]. This indicates that their distinctive cell properties are influenced by their microenvironment, thus stringent precisely define %K Embryonic stem cells %K Hydrogel %K Pluripotent stem cells %K Cell culture %U http://www.cellregenerationjournal.com/content/1/1/6