%0 Journal Article %T A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection %A Chung-Her Jenh %A Mary Ann Cox %A Long Cui %A Eva-Pia Reich %A Lee Sullivan %A Shu-Cheng Chen %A David Kinsley %A Shiguang Qian %A Seong Heon Kim %A Stuart Rosenblum %A Joseph Kozlowski %A Jay S Fine %A Paul J Zavodny %A Daniel Lundell %J BMC Immunology %D 2012 %I BioMed Central %R 10.1186/1471-2172-13-2 %X In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment.SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to prevent transplant rejection.Leukocyte infiltration into inflammatory sites is critical for the initiation and progression of a variety of inflammatory disorders and is controlled via the activation and signaling of specific cell-surface chemoattractant receptors by their cognate protein ligands, termed chemokines. Chemokines, which are produced by a number of cell types at sites of inflammation, mediate the firm adhesion of leukocytes to activated endothelial cells, their subsequent transmigration and extravasation into the inflamed tissue, and possibly several cellular signaling %U http://www.biomedcentral.com/1471-2172/13/2