%0 Journal Article %T Recognition of medication information from discharge summaries using ensembles of classifiers %A Son Doan %A Nigel Collier %A Hua Xu %A Pham Hoang Duy %A Tu Minh Phuong %J BMC Medical Informatics and Decision Making %D 2012 %I BioMed Central %R 10.1186/1472-6947-12-36 %X We investigated ensemble classifiers that used different voting strategies to combine outputs from three individual classifiers: a rule-based system, a support vector machine (SVM) based system, and a conditional random field (CRF) based system. Three voting methods were proposed and evaluated using the annotated data sets from the 2009 i2b2 NLP challenge: simple majority, local SVM-based voting, and local CRF-based voting.Evaluation on 268 manually annotated discharge summaries from the i2b2 challenge showed that the local CRF-based voting method achieved the best F-score of 90.84% (94.11% Precision, 87.81% Recall) for 10-fold cross-validation. We then compared our systems with the first-ranked system in the challenge by using the same training and test sets. Our system based on majority voting achieved a better F-score of 89.65% (93.91% Precision, 85.76% Recall) than the previously reported F-score of 89.19% (93.78% Precision, 85.03% Recall) by the first-ranked system in the challenge.Our experimental results using the 2009 i2b2 challenge datasets showed that ensemble classifiers that combine individual classifiers into a voting system could achieve better performance than a single classifier in recognizing medication information from clinical text. It suggests that simple strategies that can be easily implemented such as majority voting could have the potential to significantly improve clinical entity recognition. %U http://www.biomedcentral.com/1472-6947/12/36/abstract