%0 Journal Article %T Hydrophilic and lipophilic radiopharmaceuticals as tracers in pharmaceutical development: In vitro ¨C In vivo studies %A Mariella Ter¨¢n %A Eduardo Savio %A Andrea Paolino %A Malcolm Frier %J BMC Medical Physics %D 2005 %I BioMed Central %R 10.1186/1471-2385-5-5 %X In-vitro disintegration and dissolution studies have been performed at pH 1, 4 and 7. In-vivo studies have been performed by scintigraphic imaging in healthy volunteers. Two hydrophilic tracers, (99mTc-DTPA) and (99mTc-MDP), and two lipophilic tracers, (99mTc-ECD) and (99mTc-MIBI), were used as drug models.Dissolution and disintegration profiles, differed depending on the drug model chosen. In vitro dissolution velocity constants indicated a probable retention of the radiotracer in the formulation. In vivo disintegration velocity constants showed important variability for each radiopharmaceutical. Pearson statistical test showed no correlation between in vitro drug release, and in vivo behaviour, for 99mTc-DTPA, 99mTc-ECD and 99mTc-MIBI. High correlation coefficients were found for 99mTc-MDP not only for in vitro dissolution and disintegration studies but also for in vivo scintigraphic studies.Scintigraphic studies have made a significant contribution to the development of drug delivery systems. It is essential, however, to choose the appropriate radiotracers as models of drug behaviour. This study has demonstrated significant differences in release patterns, depending on the model chosen. It is likely that each formulation would require the development of a specific model, rather than being able to use a generic drug model on the basis of its physicochemical characteristics.Development of new drug formulations requires the performance of extensive studies, both in the laboratory, and in vivo, in animals and in volunteers. In vitro studies can be very expensive but costs are even higher when in vivo stages are reached. Methodology that can generate relevant information but shorten the preformulation phases means important savings in economic, human and time terms [1-9]. Gamma scintigraphy provides rapid, complementary information that often cannot be obtained by other methodologies. It has been successfully used during development stages of feasibility studies and i %U http://www.biomedcentral.com/1471-2385/5/5