%0 Journal Article %T BglBricks: A flexible standard for biological part assembly %A J Christopher Anderson %A John E Dueber %A Mariana Leguia %A Gabriel C Wu %A Jonathan A Goler %A Adam P Arkin %A Jay D Keasling %J Journal of Biological Engineering %D 2010 %I BioMed Central %R 10.1186/1754-1611-4-1 %X Here, we present a similar but new composition standard, called BglBricks, that addresses the scar translation issue associated with the original standard. The new system employs BglII and BamHI restriction enzymes, robust cutters with an extensive history of use, and results in a 6-nucleotide scar sequence encoding glycine-serine, an innocuous peptide linker in most protein fusion applications. We demonstrate the utility of the new standard in three distinct applications, including the construction of constitutively active gene expression devices with a wide range of expression profiles, the construction of chimeric, multi-domain protein fusions, and the targeted integration of functional DNA sequences into specific loci of the E. coli genome.The BglBrick standard provides a new, more flexible platform from which to generate standard biological parts and automate DNA assembly. Work on BglBrick assembly reactions, as well as on the development of automation and bioinformatics tools, is currently underway. These tools will provide a foundation from which to transform genetic engineering from a technically intensive art into a purely design-based discipline.Synthetic biology takes a ground-up approach to genetically engineer cellular systems capable of the sophisticated sensing, information processing, and actuation exhibited by natural systems. While it is important to build increasingly complex systems when necessary, the goal is to do so using tools and methodologies that streamline biology and make it easier to engineer. At the center of this approach lies the need to impart novel biological function(s) by systematically introducing new designed DNA sequences into living cells. The two main challenges in this endeavor are: first, knowing how to design sequences that impart a particular function; and second, how to construct the DNA encoding such function in a form that can be readily introduced into the cell. Standard assembly parts, such as BioBricks£¿ [1], provid %U http://www.jbioleng.org/content/4/1/1