%0 Journal Article %T Harnessing DNA Synthesis to Develop Rapid Responses to Emerging and Pandemic Pathogens %A Lisa M. Runco %A J. Robert Coleman %J Journal of Pathogens %D 2011 %I Hindawi Publishing Corporation %R 10.4061/2011/765763 %X Given the interconnected nature of our world today, emerging pathogens and pandemic outbreaks are an ever-growing threat to the health and economic stability of the global community. This is evident by the recent 2009 Influenza A (H1N1) pandemic, the SARS outbreak, as well as the ever-present threat of global bioterrorism. Fortunately, the biomedical community has been able to rapidly generate sequence data so these pathogens can be readily identified. To date, however, the utilization of this sequence data to rapidly produce relevant experimental results or actionable treatments is lagging in spite of obtained sequence data. Thus, a pathogenic threat that has emerged and/or developed into a pandemic can be rapidly identified; however, translating this identification into a targeted therapeutic or treatment that is rapidly available has not yet materialized. This commentary suggests that the growing technology of DNA synthesis should be fully implemented as a means to rapidly generate in vivo data and possibly actionable therapeutics soon after sequence data becomes available. 1. Pandemic Viral Outbreaks Today, the ability to determine if an isolated viral outbreak could develop into a pandemic has been facilitated by efficient PCR and sequencing techniques to quickly identify and characterize the pathogen [1]. The prompt generation of sequence data from infected individuals has allowed for the identification of these emergent pathogens and for the Center for Disease Control (CDC) or World Health Organization (WHO) to determine if these emergent pathogens pose a pandemic threat. This determination is based on the early rate of infection, sequence data similarity, and virulence factor molecular markers [2, 3]. Take for example the recent pandemic of the 2009 H1N1 Influenza A virus (2009 H1N1) which was identified in Mexico and rapidly spread to other countries [4]. Sample isolation and sequencing provided for immediate analysis of the sequence data and determination of origin, strain, and genomic characteristics of the virus [5]. Thus, health agencies could hypothesize that indeed it was a threat to the global community given its antigenic novelty [6]. The CDC has estimated that the H1N1 pandemic infected between 47 to 81 million individuals [7]. The majority of individuals infected with 2009 H1N1 experienced mild disease symptoms, yet it was estimated that the disease accounted for nearly 9,820 deaths in the United States (US) alone [7]. Influenza virus is a continual threat as the cause of a pandemic outbreak given the ability of the virus to reassort %U http://www.hindawi.com/journals/jpath/2011/765763/