%0 Journal Article %T Characterisation of the Fusarium graminearum-Wheat Floral Interaction %A Neil A. Brown %A Chris Bass %A Thomas K. Baldwin %A Huaigu Chen %A Fabien Massot %A Pierre W. C. Carion %A Martin Urban %A Allison M. L. van de Meene %A Kim E. Hammond-Kosack %J Journal of Pathogens %D 2011 %I Hindawi Publishing Corporation %R 10.4061/2011/626345 %X Fusarium Ear Blight is a destructive fungal disease of cereals including wheat and can contaminate the crop with various trichothecene mycotoxins. This investigation has produced a new ¦Â-glucuronidase (GUS) reporter strain that facilitates the quick and easy assessment of plant infection. The constitutively expressed gpdA:GUS strain of Fusarium graminearum was used to quantify the overall colonisation pattern. Histochemical and biochemical approaches confirmed, in susceptible wheat ear infections, the presence of a substantial phase of symptomless fungal growth. Separate analyses demonstrated that there was a reduction in the quantity of physiologically active hyphae as the wheat ear infection proceeded. A simplified linear system of rachis infection was then utilised to evaluate the expression of several TRI genes by RT-qPCR. Fungal gene expression at the advancing front of symptomless infection was compared with the origin of infection in the rachis. This revealed that TRI gene expression was maximal at the advancing front and supports the hypothesis that the mycotoxin deoxynivalenol plays a role in inhibiting plant defences in advance of the invading intercellular hyphae. This study has also demonstrated that there are transcriptional differences between the various phases of fungal infection and that these differences are maintained as the infection proceeds. 1. Introduction Fusarium Ear Blight (FEB) disease also referred to as Fusarium head scab (http://www.scabusa.org/) is a destructive fungal disease that has the potential to devastate wheat, barley, rye, oat, or maize crops just weeks before harvest. All of the major wheat producing countries (http://faostat.fao.org/) have reported serious and repeated FEB outbreaks in the past decade, making the impact of Fusarium infections a global issue. This worldwide re-emergence is believed to be driven by changes in climate and agronomic practices. CIMMYT describes FEB as a major limiting factor to wheat production across the world [1]. Over the last 10 years, the average FEB incidence in UK wheat fields was 39% (http://www.cropmonitor.co.uk/). Fusarium graminearum (teleomorph Gibberella zeae) is a filamentous ascomycete and one of the main causal agents of FEB throughout Europe, Asia, and the Americas [1, 2]. Besides dramatically reducing yield, grain quality is affected through the selective loss of albumin and gluten proteins [3]. The grains harvested from an infected crop are also contaminated with various fungal mycotoxins often making them unsuitable and/or unsafe for human consumption, animal %U http://www.hindawi.com/journals/jpath/2011/626345/