%0 Journal Article %T Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival %A Chad R Schultz %A William A Golembieski %A Daniel A King %A Stephen L Brown %A Chaya Brodie %A Sandra A Rempel %J Molecular Cancer %D 2012 %I BioMed Central %R 10.1186/1476-4598-11-20 %X Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone.We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.Glioblastomas (GBMs) are the most malignant and heterogeneous human brain tumors [1]. Approximately 90%-95% of GBMs develop rapidly without evidence of lower grade precursor tumors. These are designated as primary or "de novo" tumors [2]. The remaining 5%-10% develop through progressive changes from low-grade diffuse astrocytoma and/or anaplastic astrocytoma and are designated as secondary GBMs [2]. Sequencing, copy number analysis, and expression profiles have better delineated the ge %K Glioma %K SPARC %K HSP27 %K AKT %K Tumor cell survival %K Apoptosis %K Autophagy %K Temozolomide %U http://www.molecular-cancer.com/content/11/1/20