%0 Journal Article %T VersaCount: customizable manual tally software for cell counting %A Charles C Kim %A Joseph L DeRisi %J Source Code for Biology and Medicine %D 2010 %I BioMed Central %R 10.1186/1751-0473-5-1 %X We describe software that mimics a traditional multi-register tally counter. Full customizability allows operation on any computer with minimal hardware requirements. The efficiency of counting large numbers of samples and/or large sample sizes is improved through the use of a "multi-count" register that allows single keystrokes to correspond to multiple events. Automatically updated multi-parameter values are implemented as user-specified equations, reducing errors and time required for manual calculations. The user interface was optimized for use with a touch screen and numeric keypad, eliminating the need for a full keyboard and mouse.Our software provides an inexpensive, flexible, and productivity-enhancing alternative to manual hand tally counters.Cell counting is a technique used across many biological disciplines. For example, counting cell density on a hemocytometer is routinely used during in vitro cell culture and processing of tissue samples into single-cell suspensions. In another application, leukocyte and erythrocyte counts and morphology are commonly monitored in both clinical and basic research labs by microscopic examination of blood smeared onto slides. In our laboratory, dozens to hundreds of these smears are analyzed weekly in order monitor malaria parasite replication during in vitro culture. Although attempts have been made to automate the process of counting malaria blood smears, these approaches have limited utility due to their dependence on high quality smears at a specific cell density. Furthermore, the presence of leukocytes and reticulocytes confounds automated methods as these cell types are frequently misclassified as parasites [1-5]. In addition, the accuracy of automated methods at extremely low levels of parasitemia, such as those that commonly occur in human infections, is much lower than the level required for monitoring parasite survival due to debris in the culture resulting in false positives. Finally, automated methods have an %U http://www.scfbm.org/content/5/1/1