%0 Journal Article %T A Game-Based Virtualized Reality Approach for Simultaneous Rehabilitation of Motor Skill and Confidence %A Alasdair G. Thin %J Advances in Human-Computer Interaction %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/213143 %X Virtualized reality games offer highly interactive and engaging user experience and therefore game-based approaches (GBVR) may have significant potential to enhance clinical rehabilitation practice as traditional therapeutic exercises are often repetitive and boring, reducing patient compliance. The aim of this study was to investigate if a rehabilitation training programme using GBVR could simultaneously improve both motor skill (MS) and confidence (CON), as they are both important determinants of daily living and physical and social functioning. The study was performed using a nondominant hand motor deficit model in nonambidextrous healthy young adults, whereby dominant and nondominant arms acted as control and intervention conditions, respectively. GBVR training was performed using a commercially available tennis-based game. CON and MS were assessed by having each subject perform a comparable real-world motor task (RWMT) before and after training. Baseline CON and MS for performing the RWMT were significantly lower for the nondominant hand and improved after GBVR training, whereas there were no changes in the dominant (control) arm. These results demonstrate that by using a GBVR approach to address a MS deficit in a real-world task, improvements in both MS and CON can be facilitated and such approaches may help increase patient compliance. 1. Introduction Functional impairment of human motor function can arise due to a number of different causes including a variety of disease processes, physical trauma, and aging. The best treatment outcomes are seen when rehabilitation exercises are instituted early and in an intensive and repetitive manner in order to promote neural plasticity and muscle hypertrophy [1]. Given the often long and arduous nature of treatment programs requiring many thousands of exercise repetitions over many months, if not years, it is hardly surprising that patients commonly complain that the therapeutic exercises are repetitive and boring and this leads to poor compliance with the prescribed exercises and results in suboptimal optimal treatment outcomes. Not only is this scenario likely to impact on a patient¡¯s quality of life, but also it may ultimately result in a loss of their ability to live independently and necessitate long-term provision of care. Treatment programs are also very often resource intensive in terms of the time a physical therapist needs to devote to an individual patient and also the time spent traveling in connection with treatment. A range of technology-based solutions are therefore currently being actively %U http://www.hindawi.com/journals/ahci/2012/213143/