%0 Journal Article %T Additional High Input Low Output Impedance Analog Networks %A Sudhanshu Maheshwari %A Bhartendu Chaturvedi %J Active and Passive Electronic Components %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/574925 %X This paper presents some additional high input low output impedance analog networks realized using a recently introduced single Dual-X Current Conveyor with buffered output. The new circuits encompass several all-pass sections of first- and second-order. The voltage-mode proposals benefit from high input impedance and low output impedance. Nonideality and sensitivity analysis is also performed. The circuit performances are depicted through PSPICE simulations, which show good agreement with theory. 1. Introduction In the recent past, realization of configurable analog networks has assumed special significance for modern analogue signal processing applications. The feature is quite suited while designing analog blocks with easy configurability, so as to be employed in field programmable analog arrays (FPAAs). Simple analog blocks with this feature were reported earlier and further researched in most recent works [1每3]. Whereas configurability gives rise to the possibility of several electronic functions from a single topology, cascadability results in practical utility of analog blocks for designing more complex networks without additional coupling elements in form of buffers [4每6]. The most recent analog circuit topology benefits from these features by being suited for a number of first-order electronic functions and offering high input impedance and low output impedance [5]. The two features together are just another step towards reducing circuit components enabling portable high performance systems with ease for FPAA implementations [7, 8]. It may be noted that analog filters continue to appear in open literature as a potential analog block for larger subsystems [2每6, 9每12]. This paper presents additional first- and second-order all-pass filters with the features of high input and low output impedance. State-of-the-art floating simulators have been employed to overcome the drawbacks of passive inductors [13]. It may be noted that floating inductor simulators using current conveyors have been researched well in the literature [14每17]. Transformation technique has further been employed to realize simpler alternative with lesser circuit complexity. Extensive simulations are performed to validate the proposed theory, which not only justify the proposed theory but also provide advancement to the existing knowledge. 2. Additional First-Order All-Pass Filters The symbol and CMOS implementation of newly developed second generation Dual-X Current Conveyor (DXCC-II) with buffered output are shown in Figure 1. A newly developed DXCC-II is characterized in matrix %U http://www.hindawi.com/journals/apec/2013/574925/