%0 Journal Article %T Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System %A Ilaria Venanzi %A Filippo Ubertini %J Advances in Civil Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/745814 %X Active control devices, such as active mass dampers, are mainly employed for the reduction of wind-induced vibrations in high-rise buildings, with the final aim of satisfying vibration serviceability limit state requirements and of meeting appropriate comfort criteria. When such active devices, normally operating under wind loads associated with short return periods, are subjected to seismic events, they can experience large amplitude vibrations and exceed stroke limits. This may lead to a reduced performance of the control system that can even worsen the performance of the whole structure. In this paper, a nonlinear control strategy based on a modified direct velocity feedback algorithm is proposed for handling stroke limits of an active mass driver (AMD) system. In particular, a suitable nonlinear braking term proportional to the relative AMD velocity is included in the control law in order to slowdown the device in the proximity of the stroke limits. Experimental and numerical free vibration tests are carried out on a scaled-down five-story frame structure equipped with an AMD to demonstrate the effectiveness of the proposed control strategy. 1. Introduction Active control systems are in principle very effective for the mitigation of the structural response, especially for high-rise buildings and flexible structures that may experience significant wind-induced vibrations [1, 2]. However, their use in practical applications is still limited by the physical bounds of the devices. In the case of strong earthquakes, the limits of the actuators may be exceeded, forcing the system to operate in a nonlinear mode for which it was not designed, thus worsening the performance of the controlled structure. The physical bounds of the actuators include both the control force limits and the stroke limits. The problem of force saturation has been deeply studied in the literature. Some approaches deal with preventing saturation of the control signal by designing the control system to always operate below its limits in the framework of linear control [3]. Another category of control methods accounts for system limitations directly in the control algorithm. Chase et al. [4] modified the H¡Þ control method through the addition of nonlinear state-dependent terms in order to model the actuators saturation and the uncertainties in the parameters of the system. Indrawan et al. [5] developed the bound-force control method which excludes the control-effort penalty from the performance index defined in the case of LQR control, defines it at the end of each time interval, and %U http://www.hindawi.com/journals/ace/2014/745814/