%0 Journal Article %T Free-Form Rapid Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote Chondrogenesis %A Andr¨¦s D¨ªaz Lantada %A Hern¨¢n Alarc¨®n Iniesta %A Beatriz Pareja S¨¢nchez %A Josefa Predestinaci¨®n Garc¨ªa-Ru¨ªz %J Advances in Materials Science and Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/612976 %X In this study, we present a promising approach for the rapid development of porous polydimethylsiloxane (PDMS) scaffold prototypes, with outer geometry defined from the design stage, according to the form of conventional implants or adapted to patients¡¯ biostructures. The manufacture method is based on phase separation processes using materials obtained by casting within additive rapid prototyped molds. We include a comparative study of PDMS sponges obtained by different simple processes. Final in vitro assessment is carried out using hMSCs (bone marrow-derived human mesenchymal stem cells), cultured onto porous PDMS scaffolds functionalized with aminopropyltriethoxysilane (APTS) and equilibrated with a trophic factors medium produced by the cells. Results show that porous PDMS scaffold prototypes are excellent 3D platforms for hMSCs adhesion. Furthermore, this PDMS-3D niche, seeded with hMSCs and chondrogenic incubation medium during three weeks, showed a successful chondrogenesis determined by collagen type II expression. Thus, results show a versatile method to produce a 3D niche to address questions about cartilage and endochondral bone formation or skeleton tissues clinical approaches. 1. Introduction Tissue engineering combines biological, physical, and engineering knowledge to provide artificially developed substitutes for tissues and organs linked to repair and replacement therapies. A key element involved in tissue engineering processes is the extracellular matrix or scaffold which serves as substrate or framework for cell growth, aggregation, and tissue development [1]. These scaffolds must be porous so as to allow cell migration during the colonization process as well as the transport of nutrients and waste to and from cells, and they have to be also resistant enough to withstand possible mechanical demands, especially if final scaffold (or device) implantation is desired. Additionally, as cells are able to feel their microenvironment and substrate texture upon which they lie by changing their morphology, cytoskeleton configuration, and intra- and extracellular signaling, increasing efforts are continuously being focused on advanced design and manufacturing technologies, so as to generate and modify the structures and surfaces of biomaterials. Aspects such as porosity, pore size, and surface microtexture promote cell adherence, migration, and proliferation within the scaffold, for subsequent differentiation into relevant cell types. Thus, tissue progenitor cells and the scaffold play a fundamental role in most tissue engineering strategies as %U http://www.hindawi.com/journals/amse/2014/612976/