%0 Journal Article %T Aerosol Effects on Instability, Circulations, Clouds, and Precipitation %A Seoung-Soo Lee %A Wei-Kuo Tao %A Chang-Hoon Jung %J Advances in Meteorology %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/683950 %X It is well known that increasing aerosol and associated changes in aerosol-cloud interactions and precipitation since industrialization have been playing an important role in climate change, but this role has not been well understood. This prevents us from predicting future climate with a good confidence. This review paper presents recent studies on the changes in the aerosol-cloud interactions and precipitation particularly in deep convective clouds. In addition, this review paper discusses how to improve our understanding of these changes by considering feedbacks among aerosol, cloud dynamics, cloud and its embedded circulations, and microphysics. Environmental instability basically determines the dynamic intensity of clouds and thus acts as one of the most important controls on these feedbacks. As a first step to the improvement of the understanding, this paper specifically elaborates on how to link the instability to the feedbacks. 1. Why Is Aerosol Important in Our Understanding of Climate Change? In the last decades, observational studies suggested that climate has been changing since industrialization. Increases in green-house gases have been believed to play a major role in climate change. Anthropogenic activities that cause the increases in green-house gases generally involve the enhancement of aerosol concentration. For example, emissions of exhaust gas by cars contain not only carbon dioxide (the well-known representative green-house gas) but also aerosol particles. Numerous studies over the last decades have demonstrated that these increases in aerosol concentration have a significant impact on climate change (e.g., [1¨C3]). Hence, to better predict and cope with climate change, it is imperative to identify the role played by increasing aerosol in climate. Clouds not only intercept solar radiation to control the net energy budget and temperature in the Earth but also produce precipitation which is essential to maintain life on the Earth. In particular, rain which forms in convective clouds with strong updrafts produces most of the precipitation on a global average basis [4]. Hence, convective clouds are important for determining the relationship between aerosol and precipitation and thus the effect of the relationship on precipitation and global hydrologic circulation that are important aspects of climate. Recent studies have shown that increasing aerosol concentration since industrialization has significant impacts on cloud particles and precipitation in convective clouds and thus on global hydrologic circulations [5¨C12]. In this review %U http://www.hindawi.com/journals/amete/2014/683950/