%0 Journal Article %T Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress %A Paraskevi Roussou %A Nikolaos J. Tsagarakis %A Dimitrios Kountouras %A Sarantis Livadas %A Evanthia Diamanti-Kandarakis %J Anemia %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/617204 %X Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM womenĄŻs infertility. 1. Introduction In beta-thalassemia major (BTM), iron overload is the joint outcome of multiple blood transfusions and an inappropriately increased iron absorption associated with ineffective erythropoiesis [1]. The outpouring of catabolic iron that exceeds the iron-carrying capacity of transferrin results in the emergence of nontransferrin-bound iron (NTBI), which catalyzes the formation of free radicals, resulting in oxidative stress (OS) and damage to mitochondria, lysosomes, lipid membranes, proteins, and DNA [1]. Thus, thalassemics are in a state of enhanced OS [2]. Meanwhile, recent advances in the management of BTM have significantly improved life expectancy and quality of life of BTM patients, with a consequent increase in their reproductive potential and desire to have children [3]. However, endocrine complications due to haemosiderosis are still present in a significant number of patients worldwide and often become a barrier in their desire for parenthood [4]. Female patients with BTM usually suffer from hypogonadotropic hypogonadism (HH) associated with amenorrhea, anovulation, and infertility, attributed to the iron effect on the pituitary gland as well as on the %U http://www.hindawi.com/journals/anemia/2013/617204/