%0 Journal Article %T State of Art of Solar Photovoltaic Technology %A Utpal Gangopadhyay %A Sukhendu Jana %A Sayan Das %J Conference Papers in Science %D 2013 %R 10.1155/2013/764132 %X Solar electricity is more expensive than that produced by traditional sources. But over the past two decades, the cost gap has been closing. Solar photovoltaic (SPV) technology has emerged as a useful power source of applications such as lightning, meeting the electricity needs of villages, hospitals, telecommunications, and houses. The long and increasing dominance of crystalline silicon in photovoltaic (PV) market is perhaps surprising given the wide variety of materials capable of producing the photovoltaic effect. PV based on silicon wafers has captured more than 90% market share because it is more reliable and generally more efficient than competing technologies. The crystalline silicon PV is reliable as far as long term stability in real field but it is not economically viable due to starting material silicon itself costly. But still, research continues on developing a diverse set of alternative photovoltaic technology. Now PV technology is being increasingly recognized as a part of the solution to the growing energy challenge and an essential component of future global energy production. In this paper, we give a brief review about PV technology particularly crystalline silicon PV including the world and Indian PV scenarios. 1. Introduction Solar energy is the most readily available and free source of energy since prehistoric times although it is used in most primitive way. Solar energy can be used directly for heating and lighting home and buildings, for generating electricity, cooking food, hot-water heating, solar cooling, drying materials, and a variety of commercial and industrial uses [1¨C3]. Solar energy can be utilized through two different routes, solar thermal routes and solar photovoltaic routes [4, 5]. Solar energy can be converted into thermal energy with the help of solar collectors and receivers known as solar-thermal devices. PV-created direct current (DC) electricity that can be used as such is converted to alternating current (AC) or stored for later use. This type of solar electricity is more expensive than that produced by traditional sources. But over the past two decades, the cost gap has been closing. Solar photovoltaic (SPV) technology has emerged as a useful power source of applications such as lightning, meeting the electricity needs of villages, hospitals, telecommunications, and houses. The long and increasing dominance of crystalline silicon in photovoltaic (PV) market is perhaps surprising given the wide variety of materials capable of producing the photovoltaic effect. PV based on silicon wafers has captured more than %U http://www.hindawi.com/journals/cpis/2013/764132/