%0 Journal Article %T How Sleep Activates Epileptic Networks? %A Peter Hal¨¢sz %J Epilepsy Research and Treatment %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/425697 %X Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. 1. Introduction The robust activation of epileptic interictal and ictal activity in NREM sleep is well known and valid for almost all types of epilepsies. Different aspects of relationship between sleep and epilepsy were addressed in several excellent reviews [1¨C4]. During development of the last years, several new aspects have been elaborated contributing to understand better the activation of interictal and ictal epileptic phenomena by sleep. The most important issues among them are as follows. (1) Sleep physiology has revealed neuronal networks governing wake-sleep alternations and cyclic changes during night sleep. Nowadays we see better the interrelationship between the sleep-wake circuitry and its multifold relationship with the different epileptic networks. (2) In the microstructure of sleep certain dynamic key points have shown to be associated with epileptic activation identified within the system of cyclic alternating pattern (CAP) correlating with reactive slow wave events. (3) One of the most important among recent discoveries is the exploration of the high frequency range of EEG and the recognition the relationship of this phenomenon with epilepsy and slow wave sleep. (4) Recognition of %U http://www.hindawi.com/journals/ert/2013/425697/