%0 Journal Article %T Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice %A Rosa Martha Perez Gutierrez %A Diana Madrigales Ahuatzi %A Maria del Carmen Horcacitas %A Efren Garcia Baez %A Teresa Cruz Victoria %A Jose Maria Mota-Flores %J Evidence-Based Complementary and Alternative Medicine %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/145901 %X Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400£¿mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis. 1. Introduction Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary life style, conditioned by environmental and genetic factors [1]. Obesity results from an imbalance between energy intake and expenditure. It is often associated with chronic diseases such as hyperlipidemia, hvpertension and noninsulin- dependent diabetes mellitus and with increased risk of coronary heart diseases [2]. It has been reported that variations in total energy intake and diet composition are important in the regulation of metabolic processes [3]. Excessive accumulation of lipids in nonadipose tissues such as liver, heart, skeletal muscle, kidney, and pancreas contributes to the pathogenesis of fatty liver, heart failure, and insulin resistance with the so-called lipotoxicity mechanism, fatty liver is an early hallmark of nonalcoholic fatty liver disease [4], the most common chronic liver %U http://www.hindawi.com/journals/ecam/2014/145901/