%0 Journal Article %T Genetic Analysis of Avian Influenza Viruses: Cocirculation of Avian Influenza Viruses with Allele A and B Nonstructural Gene in Northern Pintail (Anas acuta) Ducks Wintering in Japan %A Alam Jahangir %A Sakchai Ruenphet %A Nadia Sultana %A Dany Shoham %A Kazuaki Takehara %J Influenza Research and Treatment %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/847505 %X The pandemic influenza virus strains of 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) have genes related to avian influenza viruses (AIVs). The nonstructural (NS) gene of AIVs plays a significant role in host-viral interaction. However, little is known about the degree of diversity of this gene in Northern pintail (Anas acuta) ducks wintering in Japan. This study describes characteristics of pintail-originated H1N1, H1N2, H1N3, H5N2, H5N3, H5N9, and H7N7 viruses. Most of the viruses were revealed to be avian strains and not related to pandemic and seasonal flu strains. Nevertheless, the NP genes of 62.5% (5/8) viruses were found closely related to a A/swine/Korea/C12/08, indicating exchange of genetic material and ongoing mammalian-linked evolution of AIVs. Besides, all the viruses, except Aomori/422/07 H1N1, contain PSIQSR*GLF motif usually found in avian, porcine, and human H1 strains. The Aomori/422/07 H1N1 has a PSVQSR*GLF motif identical to a North American strain. This findings linked to an important intercontinental, Asian-American biogeographical interface. Phylogenetically all the viruses were clustered in Eurasian lineage. Cocirculation of allele A and B (NS gene) viruses was evident in the study implying the existence of a wide reservoir of influenza A viruses in pintail wintering in Japan. 1. Introduction Influenza A virus infections in birds account for important inputs into the evolutionary porcine-human complex of this prominent anthropozoonotic pathogen. Among influenza A viruses, which broadly exhibit 17 HA and 9 NA antigenic subtypes, only three haemagglutinin (HA) subtypes (H1, H2, and H3) and two neuraminidase (NA) subtypes (N1 and N2) have circulated widely in swine and human populations since the 20th century [1]. Viruses from waterfowl reassorted with existing human and/or porcine influenza viruses to generate the 1957, 1968 [2], and 2009 (Novel swine-origin influenza A (H1N1) virus investigation team, 2009) pandemic influenza viruses and may expectably play a similar role in the creation of future pandemic viruses. In addition, on multiple occasions, it has been evident that avian influenza viruses (AIVs), chiefly the subtypes H5N1, H7N7, and H9N2, directly transmitted from birds to humans [3, 4]. Avian-originated H1N1, H3N2, H5N1, and H9N2 viruses have been recovered from pigs in Asia, Europe, and Canada [5¨C7]. Furthermore, H2N3 avian virus reassortants were isolated from pigs in the United States [8]. Pigs have been postulated, hence, to be the ultimate ¡°mixing vessels¡± for mammalian influenza viruses and AIVs and can %U http://www.hindawi.com/journals/irt/2012/847505/