%0 Journal Article %T Dynamics and Conservation Management of a Wooded Landscape under High Herbivore Pressure %A Adrian C. Newton %A Elena Cantarello %A Natalia Tejedor %A Gillian Myers %J International Journal of Biodiversity %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/273948 %X We present the use of a spatially explicit model of woodland dynamics (LANDIS-II) to examine the impacts of herbivory in the New Forest National Park, UK, in relation to its management for biodiversity conservation. The model was parameterized using spatial data and the results of two field surveys and then was tested with results from a third survey. Field survey results indicated that regeneration by tree species was found to be widespread but to occur at low density, despite heavy browsing pressure. The model was found to accurately predict the abundance and richness of tree species. Over the duration of the simulations (300£¿yr), woodland area increased in all scenarios, with or without herbivory. While the increase in woodland area was most pronounced under a scenario of no herbivory, values increased by more than 70% even in the presence of heavy browsing pressure. Model projections provided little evidence for the conversion of woodland areas to either grassland or heathland; changes in woodland structure and composition were consistent with traditional successional theory. These results highlight the need for multiple types of intervention when managing successional landscape mosaics and demonstrate the value of landscape-scale modelling for evaluating the role of herbivory in conservation management. 1. Introduction Identification of an appropriate approach for managing disturbance regimes represents one of the most significant challenges to conservation management. Disturbance can be considered as a cause of biodiversity loss, and in such cases management responses might be developed which reduce the frequency or intensity of disturbance events. However, many species are dependent on disturbance to complete one or more parts of their life cycle, and the persistence of such species within a given area will depend on maintenance of an appropriate disturbance regime [1, 2]. This is particularly the case in successional habitats, such as heathland or grassland, which account for a significant proportion of areas of high conservation value in countries such as the UK [3]. Many management interventions, such as the cutting, burning, or grazing of vegetation, are designed to prevent the succession of such habitats to woodland. In order for effective management approaches to be developed, an understanding of the potential impacts of different disturbance regimes is required, including the interactions between different types of disturbance [4, 5]. To ensure that appropriate disturbance regimes are identified, tools are required that enable the %U http://www.hindawi.com/journals/ijbd/2013/273948/