%0 Journal Article %T Endoscopy-MR Image Fusion for Image Guided Procedures %A Anwar Abdalbari %A Xishi Huang %A Jing Ren %J International Journal of Biomedical Imaging %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/472971 %X Minimally invasive endoscope based abdominal procedures provide potential advantages over conventional open surgery such as reduced trauma, shorter hospital stay, and quick recovery. One major limitation of using this technique is the narrow view of the endoscope and the lack of proper 3D context of the surgical site. In this paper, we propose a rapid and accurate method to align intraoperative stereo endoscopic images of the surgical site with preoperative Magnetic Resonance (MR) images. Gridline light pattern is projected on the surgical site to facilitate the registration. The purpose of this surface-based registration is to provide 3D context of the surgical site to the endoscopic view. We have validated the proposed method on a liver phantom and achieved the surface registration error of £żmm. 1. Introduction In this paper, we develop a new method for endoscopy-MR image fusion of the liver organ for minimally invasive endoscope based surgery. Image guidance is an essential tool in minimally invasive endoscope based abdominal procedures [1]. Effective image guidance can compensate the restricted perception during the operation, which is considered a major limitation in endoscopic procedures. Without image guidance, the surgeon cannot see through the surface of the operation site and may accidentally cause damages to the critical structures of the patient. A typical procedure in image guidance is to map pre-operative high quality MR images to intra-operative endoscopic video images, or the patient thereby provides a good quality context to the real-time endoscopic images. Thus, the surgeon will be able to visually access the operation site during the procedure. As a result, the damage to the critical organs or tissues will be substantially minimized. Fusion of endoscopic video images with high quality MR images requires good match of these two modalities. In this paper, we adopt a surface based image fusion because the two modalities are different in acquisition and nature [2, 3]. In order to find the corresponding 3D surface model from endoscopic images, we utilize stereovision to snapshot the surgical site from two different angles and compute the 3D location by using triangulation [4]. Cameras are calibrated before triangulation is used [5, 6]. Although a liver phantom is used to validate the proposed technique, our method is not restricted to the liver surgery. The integrated image guidance can also be applied to other endoscopic procedures. This paper is organized as follows. Section 2 introduces the experimental setup and the camera calibration %U http://www.hindawi.com/journals/ijbi/2013/472971/