%0 Journal Article %T Acetylation of Wood Flour from Four Wood Species Grown in Nigeria Using Vinegar and Acetic Anhydride %A Yakubu Azeh %A Gabriel Ademola Olatunji %A Cheku Mohammed %A Paul Andrew Mamza %J International Journal of Carbohydrate Chemistry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/141034 %X Effect of acetylation on pretreated wood flour of four different wood species, Boabab (Adansonia digitata), Mahoganny (Daniella oliveri), African locust bean (Parkia biglobosa) and Beech wood (Gmelina arborea), had been investigated. The first batch of wood species were acetylated using acetic anhydride while the second batch were acetylated with commercial vinegar. Both experiments were conducted in the presence of varying amount of CaCl2 as catalyst and at temperature of 120¡ãC for 3£¿h. The success of acetylation was determined based on Weight Percent Gain for each sample treated with either chemicals used. FT-IR, a veritable tool was used for the analysis of both treated and untreated samples to further investigate the success of acetylation. The results showed the presence of important band such as carbonyl absorptions at 1743, 1744, 1746, 1731, 1718 and 1696£¿cm£¿1 as appeared separately in the spectra of acetylated samples, confirming esterification occurred. The purpose of this work was to investigate the applicability of vinegar for acetylation of lignocellulosic fibers. Blends/composites were prepared by solution casting and their kinetics investigated in distilled water. The results indicated they could be used in outdoor applications such as, decking and packaging. 1. Introduction Composites have been described as materials composed of a hard material with discontinuous reinforcement that is embedded in a weaker, continuous matrix. Where the reinforcement matrix [1] maintains the position and orientation of the reinforcement. The constituents of the composites retain their individual, physical and chemical properties. Composite give a combination of qualities that are very different from the individual constituents that constituted the composite. Several reports on thermoplastic composites have been documented. Different types of modified and unmodified natural fibers such as wood fibers and flour, kenaf fibers, sago, rice starch, cornstarch, henequen fibers, and pineapple-leaf fibers, have been used as fillers in polymer matrices [1, 2]. Dimensional stability and strength of unmodified wood flour polyethylene composites was reported to have improved by increased in fiber loading(s). Unmodified starch have been used to produce composites of low density polyethylene (LDPE). Composites of unmodified starch have been reported to exhibit low mechanical properties, though with improved biodegradation. The introduction of ester groups unto starch surface, manipulate its properties and support the blending mechanism [3]. Wood-Plastic composites have %U http://www.hindawi.com/journals/ijcc/2013/141034/