%0 Journal Article %T TSRF: A Trust-Aware Secure Routing Framework in Wireless Sensor Networks %A Junqi Duan %A Dong Yang %A Haoqing Zhu %A Sidong Zhang %A Jing Zhao %J International Journal of Distributed Sensor Networks %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/209436 %X In recent years, trust-aware routing protocol plays a vital role in security of wireless sensor networks (WSNs), which is one of the most popular network technologies for smart city. However, several key issues in conventional trust-aware routing protocols still remain to be solved, such as the compatibility of trust metric with QoS metrics and the control of overhead produced by trust evaluation procedure. This paper proposes a trust-aware secure routing framework (TSRF) with the characteristics of lightweight and high ability to resist various attacks. To meet the security requirements of routing protocols in WSNs, we first analyze features of common attacks on trust-aware routing schemes. Then, specific trust computation and trust derivation schemes are proposed based on analysis results. Finally, our design uses the combination of trust metric and QoS metrics as routing metrics to present an optimized routing algorithm. We show with the help of simulations that TSRF can achieve both intended security and high efficiency suitable for WSN-based networks. 1. Introduction With the rapid advancements in Internet of Things (IoT), cloud computing, and social networks, smart city has attracted more and more attention in modern society. Smart city that relies on the different kinds of distributed smart devices can offer a wide range of applications for urban residents, such as environmental monitoring, traffic management, and social entertainments. These applications cannot only improve the living quality of city inhabitants, but also promote the realization of the low-carbon society. Due to the characteristics of low cost, rapid deployment, and self-organized, wireless sensor networks (WSNs) play a crucial role in constructing the network and facilitate various services for smart city. The ubiquitous sensor nodes can both collect physical information of urban environments and control the public or private facilities in the context of smart city environments. Consequently, many studies of smart city have been made on the basis of WSNs technologies [1, 2]. With a limited radio communication range, wireless sensor nodes typically communicate with each other via a multihop path. In this case, the design of routing protocol that determines the data forwarding and transmission path is a key process to consider as it will directly affect the performance of WSNs, such as the network lifetime, packet delivery rates and end-to-end packet delay [3¨C6]. In this paper, we focus on security aspects of routing protocols in WSNs. Due to the open, distributed, and dynamic %U http://www.hindawi.com/journals/ijdsn/2014/209436/