%0 Journal Article %T Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia %A Patrick Addo-Fordjour %A Zakaria B. Rahmad %J International Journal of Ecology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/658140 %X The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB). Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10) data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations). The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: ). The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992). Generally, log-transformed models showed better fit (Furnival's index, FI < 0.50) than the other models (FI > 0.5). A comparison of the best TAGB model in this study (based on FI) with previously published equations indicated that most of the equations significantly ( ) overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation ( ). Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass. 1. Introduction Lianas have great influence on forest ecosystems, especially in tropical forests [1]. They contribute very much to species diversity in the tropics, constituting as high as 38% of species diversity [2]. They may compose of a much higher percentage (45%) with regard to total woody plant stems in the tropics (cf. [3]). Lianas serve as an important source of food for forest fauna especially in the dry season [4]. They may provide up to about one-third of canopy foliage in the forest (cf. [5]) and therefore contribute substantially (up to 36%) to total above-ground leaf biomass in tropical forest ecosystems [6]. Lianas compete with trees which may affect tree growth [7, 8]. Additionally, they may have negative influence on seed production of trees and also impede natural regeneration of trees [7¨C9]. Tropical forest ecosystems continue to be exploited at alarming rates resulting in their conversion to secondary forests and many other forms of land use [10]. A high proportion of forests in the tropics is made up of secondary forests [11]. In Malaysia, many lowland dipterocarp forests have been converted to secondary forests as a result of logging, %U http://www.hindawi.com/journals/ijecol/2013/658140/