%0 Journal Article %T Sex-Biased Networks and Nodes of Sexually Antagonistic Conflict in Drosophila %A Matthew E. B. Hansen %A Rob J. Kulathinal %J International Journal of Evolutionary Biology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/545392 %X Sexual antagonism, or conflict, can occur when males and females harbor opposing reproductive strategies. The large fraction of sex-biased genes in genomes present considerable opportunities for conflict to occur, suggesting that sexual antagonism may potentially be a general phenomenon at the molecular level. Here, we employ a novel strategy to identify potential nodes of sexual conflict in Drosophila melanogaster by coupling male, female, and sex-unbiased networks derived from genome-wide expression data with available genetic and protein interaction data. We find that sex-biased networks comprise a large fraction (~1/3) of the total interaction network with the male network possessing nearly twice the number of nodes (genes) relative to the female network. However, there are far less edges or interaction partners among male relative to female subnetworks as seen in their power law distributions. We further identified 598 sex-unbiased genes that can act as indirect nodes of interlocus sexual conflict as well as 271 direct nodal pairs of potential conflict between male- and female-biased genes. The pervasiveness of such potentially conflicting nodes may explain the rapid evolution of sex-biased as well as non-sex-biased genes via this molecular mechanism of sexual selection even among taxa such as Drosophila that are nominally sexually dimorphic. 1. Introduction The cooccurrence of distinct morphs¡ªmale and female¡ªin sexually reproducing taxa continues to fascinate and perplex developmental and evolutionary biologists alike. Ranging from the subtle to the dramatic, sexually dimorphic traits are presumed to be the product of dynamically evolving genetic architectures that rapidly respond to evolutionary pressures such as sexual selection [1] (for more recent overviews, see [2]). Recent genome-wide analyses have demonstrated that sexual dimorphism is also prevalent at the level of the genome with the majority of genes expressing a male- or female-bias across a range of developmental stages [3¨C7]. This emerging molecular view reveals that a large fraction of the genome can be expressed in either male or female states. Like traits, genes can possess alternative strategies depending on the sex they are expressed in. A gene that is expressed in males may provide an important and critical role in his reproductive success while the same gene, when expressed in females, may impart a similarly important but different role in her survival. Thus, fitness effects from the same locus, under different context-dependent states, may be in conflict. This particular type %U http://www.hindawi.com/journals/ijeb/2013/545392/