%0 Journal Article %T Enhanced Production of Xylitol from Corncob by Pachysolen tannophilus Using Response Surface Methodology %A S. Ramesh %A R. Muthuvelayudham %A R. Rajesh Kannan %A T. Viruthagiri %J International Journal of Food Science %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/514676 %X Optimization of the culture medium and process variables for xylitol production using corncob hemicellulose hydrolysate by Pachysolen tannophilus (MTTC 1077) was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. Peptone, xylose, MgSO4¡¤7H2O, and yeast extract were selected based on their positive influence on xylitol production. The selected components were optimized with Box-Behnken design using response surface methodology (RSM). The optimum levels (g/L) were peptone: 6.03, xylose: 10.62, MgSO4¡¤7H2O: 1.39, yeast extract: 4.66. The influence of various process variables on the xylitol production was evaluated. The optimal levels of these variables were quantified by the central composite design using RSM, for establishment of a significant mathematical model with a coefficient determination of . The validation experimental was consistent with the prediction model. The optimum levels of process variables were temperature (36.56¡ãC), pH (7.27), substrate concentration (3.55£¿g/L), inoculum size (3.69£¿mL), and agitation speed (194.44£¿rpm). These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.80£¿g/g. 1. Introduction Lignocellulosic materials represent an abundant and inexpensive source of sugars and can be microbiologically converted to industrial products. Xylitol (C5H12O5), a sugar alcohol obtained from xylose, is generated during the metabolism of carbohydrates in animals and humans. Its concentration in human blood varies from 0.03 to 0.06£¿mg/100£¿mL [1]. Xylitol was present in fruits and vegetables [2], at low concentration, which makes its production from these sources economically unfeasible [3]. As a sweetener, xylitol is a substitute for conventional sugars [4]. Its sweetening power was comparable to that of sucrose and is higher than that of sorbitol and mannitol [5]. Furthermore, xylitol has anticariogenic properties. Because it is not consumed by streptococcus mutans, xylitol prevents the formation of acids that attack tooth enamel [6]. In addition to reducing dental caries, xylitol also promotes tooth enamel remineralization by reversing small lesions. This happens because, when in contact with xylitol, the saliva seems to be favorably influenced; the chemical composition of xylitol induces the calcium ions and phosphate [7]. For these characteristics, xylitol was a feed stock of great interest to food, odontological, and pharmaceutical industries [1]. Currently, xylitol %U http://www.hindawi.com/journals/ijfs/2013/514676/