%0 Journal Article %T Expression and Functional Analysis of Storage Protein 2 in the Silkworm, Bombyx mori %A Wei Yu %A Meihui Wang %A Hanming Zhang %A Yanping Quan %A Yaozhou Zhang %J International Journal of Genomics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/145450 %X Storage protein 2 (SP2) not only is an important source of energy for the growth and development of silkworm but also has inhibitory effects on cell apoptosis. Endothelial cell (EC) apoptosis is an important contributing factor in the development of atherosclerosis; therefore, study of the antiapoptotic activity of SP2 on ECs provides information related to the treatment of atherosclerosis and other cardiovascular diseases. In this study, the sp2 gene was cloned and expressed in Escherichia coli to produce a 6xHis-tagged fusion protein, which was then used to generate a polyclonal antibody. Western blot results revealed that SP2 levels were higher in the pupal stage and hemolymph of fifth-instar larvae but low in the egg and adult stages. Subcellular localization results showed that SP2 is located mainly on the cell membrane. In addition, a Bac-to-Bac system was used to construct a recombinant baculovirus for SP2 expression. The purified SP2 was then added to a culture medium for human umbilical vein ECs (HUVECs), which were exposed to staurosporine. A cell viability assay demonstrated that SP2 could significantly enhance the viability of HUVEC. Furthermore, both ELISA and flow cytometry results indicated that SP2 has anti-apoptotic effects on staurosporine-induced HUVEC apoptosis. 1. Introduction The vascular endothelium provides a cellular interface between the circulating blood and the vascular smooth muscle of the blood vessel walls. It also has an important role in maintaining the balance of the endovascular environment [1]. Many factors, such as peroxide, ox-low density lipoprotein (LDL), angiotensin I, and tumor-necrosis-factor-(TNF-) ¦Á can induce the production of reactive oxygen species (ROS) by NADPH oxidase in endothelium and vascular smooth muscle [2], which results in oxidative stress to the endothelial cells (ECs) and, thus, the induction of cell apoptosis. EC dysfunction is a trigger factor for the development of atherosclerosis and other cardiovascular diseases [3]. Many studies have shown that EC apoptosis is one of several atherogenic factors [4, 5]. Additional studies have also shown that hemolymph from the silkworm (Bombyx mori) can inhibit insect and mammalian cell apoptosis that is induced by viruses and several chemical inducers, such as staurosporine, camptothecin, and actinomycin D [6¨C8]. As one such antiapoptotic component in silkworm hemolymph, the 30£¿K protein has been studied widely [6, 7]. A recent study showed that another protein in silkworm hemolymph, storage protein 2 (SP2), can also inhibit staurosporine-induced HeLa %U http://www.hindawi.com/journals/ijg/2013/145450/