%0 Journal Article %T Taxonomy and Polyphasic Characterization of Alkaline Amylase Producing Marine Actinomycete Streptomyces rochei BTSS 1001 %A Aparna Acharyabhatta %A Siva Kumar Kandula %A Ramana Terli %J International Journal of Microbiology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/276921 %X Actinomycetes isolated from marine sediments along the southeast coast of Bay of Bengal were investigated for amylolytic activity. Marine actinomycete BTSS 1001 producing an alkaline amylase was identified from marine sediment of Diviseema coast, Bay of Bengal. The isolate produced alkaline amylase with maximum amylolytic activity at pH 9.5 at 50¡ãC. The organism produced white to pale grey substrate mycelium and grayish aerial mycelium with pinkish brown pigmentation. A comprehensive study of morphological, physiological parameters, cultural characteristics, and biochemical studies was performed. The presence of iso-C15£¿:£¿0, anteiso-C15£¿:£¿0, iso-C16£¿:£¿0, and anteiso-C17£¿:£¿0 as the major cellular fatty acids, LL-diaminopimelic acid as the characteristic cell wall component, and menaquinones MK-9H(6) and MK-9H(8) as the major isoprenoid quinones is attributed to the strain BTSS 1001 belonging to the genus Streptomyces. Comparison of 16S rRNA gene sequences showed that strain BTSS 1001 exhibited the highest similarities to the type strains of Streptomyces rochei (99%), Streptomyces plicatus (99%), and Streptomyces enissocaesilis (99%). Using the polyphasic taxonomical approach and phenotypic characteristic studies, the isolate BTSS 1001 was characterized as marine actinomycete Streptomyces rochei. 1. Introduction Actinomycetes have long been reported as important source of biotechnologically important compounds. The recent focus is on marine Actinomycetes as a source of bioactive compounds and industrial enzymes. This is due to the fact that terrestrial actinomycetes have been exhaustively analyzed for bioactive compounds and enzymes but they still fall short of industrial application. Thus, the need of the hour is to identify newer sources capable of withstanding the conditions of industrial and commercial applications. Studies by several researchers [1¨C4] on marine actinomycetes have reported diversity and presence of unique marine taxa in ocean sediments. Their survival in extreme conditions in the ocean sediments demonstrates their ability for adaptation and production of different types of bioactive compounds as compared to their terrestrial counterparts [5]. Marine actinomycetes have been established as a rich source of several secondary metabolites such as novel bioactive molecules like antibiotics, antifungal, and anticancer compounds, plant growth hormones, industrially important enzymes, enzyme inhibitors, and pigments [6, 7]. Culturally independent methods and polyphasic approaches have also demonstrated that marine sediments contain wide range %U http://www.hindawi.com/journals/ijmicro/2013/276921/