%0 Journal Article %T Doxapram Use for Apnoea of Prematurity in Neonatal Intensive Care %A S. A. Prins %A S. J. A. Pans %A M. M. van Weissenbruch %A F. J. Walther %A S. H. P. Simons %J International Journal of Pediatrics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/251047 %X Apnoea of prematurity is treated with noninvasive respiratory therapy and methylxanthines. For therapy unresponsive apnoea doxapram is often prescibed in preterm neonates. The duration, dosage and route of administration of doxapram together with its efficacy was evaluated in two Dutch neonatal intensive care. Outcome concerning short-term safety and neonatal morbidity were evaluated. During 5 years, 122 of 1,501 admitted newborns <32 weeks of gestational age received doxapram. 64.8% of patients did not need intubation after doxapram. 25% of treated neonates were <27 weeks of gestation. A positive response to doxapram therapy on apnoea was associated with longer duration of doxapram usage ( ), lower mean doses ( ), and less days of intensive care (median 33 versus 42 days; ). No patients died during doxapram therapy. Incidence of necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia, retinopathy of prematurity, persistent ductus arteriosus, or worsening of pulmonary condition did not increase during doxapram therapy. Doxapram is frequently used for apnoea of prematurity, despite a lack of data on short-term efficacy and long-term safety. Until efficacy and safety are confirmed in prospective trials, doxapram should be used with caution. 1. Introduction Recent advances in obstetrical and neonatal intensive care management have increased the survival rates of very low birth weight infants. In these infants, artificial ventilation is related to potential iatrogenic lung damage and therefore reduced to a minimum[1]. The introduction of new strategies of surfactant therapy includes a very short period of mechanical ventilation (InSurE) [2] or even avoidance of endotracheal intubation [3] in newborns with respiratory distress syndrome. As a consequence, noninvasive respiratory therapy has become increasingly important and is used in even the youngest neonates. In these infants, apnoea has emerged as a major clinical problem, manifested by an unstable respiratory rhythm reflecting the immaturity of the respiratory control systems. Apnoea appears to be harmful to the brain when associated with significant hypoxemia [4]. Methylxanthines, such as theophylline and caffeine, are the mainstay pharmacological treatment for apnoea and have proven to reduce chronic lung disease and long-term outcome [5, 6]. In line with current international consensus in the 2 reporting NICUs, caffeine base is given with a loading dose of 10£¿mg/kg and a maintenance dose of 5£¿mg/kg/day. Although Steer et al. and Gray et al. published very reassuring data %U http://www.hindawi.com/journals/ijpedi/2013/251047/