%0 Journal Article %T Proteomic Analysis of the Ontogenetic Variability in Plasma Composition of Juvenile and Adult Bothrops jararaca Snakes %A Karen de Morais-Zani %A Kathleen Fernandes Grego %A Aparecida Sadae Tanaka %A Anita Mitico Tanaka-Azevedo %J International Journal of Proteomics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/135709 %X The ontogenetic variability in venom composition of some snake genera, including Bothrops, as well as the biological implications of such variability and the search of new molecules that can neutralize the toxic components of these venoms have been the subject of many studies. Thus, considering the resistance of Bothrops jararaca to the toxic action of its own venom and the ontogenetic variability in venom composition described in this species, a comparative study of the plasma composition of juvenile and adult B. jararaca snakes was performed through a proteomic approach based on 2D electrophoresis and mass spectrometry, which allowed the identification of proteins that might be present at different levels during ontogenetic development. Among the proteins identified by mass spectrometry, antihemorrhagic factor Bj46a was found only in adult plasma. Moreover, two spots identified as phospholipase A2 inhibitors were significantly increased in juvenile plasma, which can be related to the higher catalytic PLA2 activity shown by juvenile venom in comparison to that of adult snakes. This work shows the ontogenetic variability of B. jararaca plasma, and that these changes can be related to the ontogenetic variability described in its venom. 1. Introduction Poisonous snakes are responsible for around 50,000 deaths among five million cases of ophidian accidents per year in the world, especially in the rural areas of tropical countries in Asia, Africa, and South America [1, 2]. Envenomation by Viperidae snakes causes local tissue damages such as edema, hemorrhage, and myonecrosis, which are not well neutralized by conventional antivenom serotherapy [3]. Bothrops jararaca (B. jararaca) snake belongs to the Viperidae family and is the main reason for ophidian accidents in the state of S£¿o Paulo, Brazil [4]. Its victims usually have, besides systemic reactions of envenomation such as bleeding and blood incoagulability, local effects at the bite site such as edema, ecchymoses, compartmental syndrome, blisters, and necrosis [5]. The envenomation symptomatology has always stimulated researches on snake venom composition and function. Unfortunately, the same is not observed for snake plasma. Despite extensive biochemical and molecular characterization of blood coagulation in mammals, little information is available about haemostasis in other vertebrates [6], although there is an increasing interest in the ¡°natural resistance¡± of snakes towards the toxicity of its own venom and towards other snake venoms. The inter- and intraspecies resistibility can contribute to the %U http://www.hindawi.com/journals/ijpro/2013/135709/