%0 Journal Article %T Metabolic Fate of the Increased Yeast Amino Acid Uptake Subsequent to Catabolite Derepression %A John S. Hothersall %A Aamir Ahmed %J Journal of Amino Acids %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/461901 %X Catabolite repression (CCR) regulates amino acid permeases in Saccharomyces cerevisiae via a TOR-kinase mediated mechanism. When glucose, the preferred fuel in S. cerevisiae, is substituted by galactose, amino acid uptake is increased. Here we have assessed the contribution and metabolic significance of this surfeit of amino acid in yeast undergoing catabolite derepression (CDR). L-[U-14C]leucine oxidation was increased 15 ¡À 1 fold in wild type (WT) strain grown in galactose compared to glucose. Under CDR, leucine oxidation was (i) proportional to uptake, as demonstrated by decreased uptake and oxidation of leucine in strains deleted of major leucine permeases and (ii) entirely dependent upon the TCA cycle, as cytochrome c1 (Cyt1) deleted strains could not grow in galactose. A regulator of amino acid carbon entry into the TCA cycle, branched chain ketoacid dehydrogenase, was also increased 29 ¡À 3 fold under CCR in WT strain. Protein expression of key TCA cycle enzymes, citrate synthase (Cs), and Cyt1 was increased during CDR. In summary, CDR upregulation of amino acid uptake is accompanied by increased utilization of amino acids for yeast growth. The mechanism for this is likely to be an increase in protein expression of key regulators of the TCA cycle. 1. Introduction In S. cerevisiae and other yeast, growth in glucose as the carbon source represses transcription of numerous genes (termed glucose repression or carbon catabolite repression, CCR) [1, 2]. Yeast grown with alternate carbon source (e.g., galactose or glycerol) undergoes catabolite derepression. During catabolite derepression (a condition akin to metabolic stress) yeast metabolism shifts from fermentative to respiratory and carbon is shunted to the mitochondrial TCA cycle thus increasing electron transport and respiration [3, 4]. We recently reported that during catabolite derepression (with galactose or glycerol as carbon source), there is an increase in yeast amino acid permease gene and protein expression, amino acid uptake, and oxygen consumption [5]. We further demonstrated that the signalling involved in the coordination of this process, via TOR1 [5], a phenomenon that is distinct from that involved in diauxic shift, the recurring life cycle in the natural history of yeast [6]. It has also been known for some time that synthesis of respiratory enzymes is increased in the presence of galactose compared to glucose [7]. Based upon these observations we put forward a prima facie model [5] suggesting that the surfeit of amino acids during catabolite derepression in yeast may serve as %U http://www.hindawi.com/journals/jaa/2013/461901/