%0 Journal Article %T Synthesis, Characterization and In Vitro Anticancer Evaluation of Itaconic Acid Based Random Copolyester %A J. Gowsika %A R. Nanthini %J Journal of Chemistry %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/173814 %X The present study deals with the synthesis and characterization of an aliphatic copolyester, poly [butylene fumarate-co-butylene itaconate] (PIFB) copolymer was obtained from itaconic acid, fumaric acid, and 1,4-butanediol using titanium tetraisopropoxide (TTiPO) through a two step process of transesterification and melt polycondensation. The synthesized aliphatic random copolyester was characterized with the help of FT-IR, 1H-NMR, 13C-NMR, viscosity measurements, Gel Permeation Chromatography (GPC) and X-ray diffraction (XRD) analysis. Thermal properties have been analyzed using thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Hydrolytic degradation studies were carried out in acid and alkaline regions of various pH values. The synthesized copolymer was subjected to in vitro anticancer activity studies against human breast cancer (MCF-7) cell line. 1. Introduction The polymer synthesis was found to be an effective development on human chemotherapy. Polyesters, polyanhydrides, and so forth are mainly used in pharmaceutical, biomedical, soft tissue engineering, and drug delivery. Drug device polyester is used for plasma expanders and also tablet coating. Whenever a new drug molecule is synthesized, it is given orally or injected into the affected tissues. Nevertheless, this system of intake has disadvantage like an undesirable effect, poor drug efficiency, duration, concentration, bioavailability, and the drug that might not be controlled. To overcome this drawback, a new controlled release technology was developed. In this technology, a drug remains inside the human body for a prolonged period of time by releasing in a controlled manner [1]. The first drug delivery application is reported using hydrogel in 1960 [2]. In the beginning, biodegradable poly (glycolic acid) and poly (lactic acid) were used for tissue engineering system [3¨C5]. Later, poly (lactide-co-glycolide) was synthesized for medical application like dental implant and scaffold for bone TE [6]. In recent years, biodegradable polyesters are widely used for drug delivery, especially for anticancer drugs [7, 8]. Biodegradable polyesters have also attracted much attention as green materials and biomaterials in biodegradable fibers, nonwovens, films, sheets, bottles, injection-molded products, pharmaceutical, medical, biomedical engineering applications including drug delivery systems, and functional materials in tissue engineering [9¨C11]. Polyesters have good biocompatibility and biodegradation property which are concluded by many researchers in the past decades. %U http://www.hindawi.com/journals/jchem/2014/173814/