%0 Journal Article %T A Comparative Study on Decision Making Methods with Interval Data %A Aditya Chauhan %A Rahul Vaish %J Journal of Computational Engineering %D 2014 %R 10.1155/2014/793074 %X Multiple Criteria Decision Making (MCDM) models are used to solve a number of decision making problems universally. Most of these methods require the use of integers as input data. However, there are problems which have indeterminate values or data intervals which need to be analysed. In order to solve problems with interval data, many methods have been reported. Through this study an attempt has been made to compare and analyse the popular decision making tools for interval data problems. Namely, I-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), DI-TOPSIS, cross entropy, and interval VIKOR (VlseKriterijumska Optimiza-cija I Kompromisno Resenje) have been compared and a novel algorithm has been proposed. The new algorithm makes use of basic TOPSIS technique to overcome the limitations of known methods. To compare the effectiveness of the various methods, an example problem has been used where selection of best material family for the capacitor application has to be made. It was observed that the proposed algorithm is able to overcome the known limitations of the previous techniques. Thus, it can be easily and efficiently applied to various decision making problems with interval data. 1. Introduction Engineers and managers over the world are daily faced with problems that require the selection of the best alternative from among the feasible options. Such complications are called decision making problems and encompass a wide variety of applications from design, optimisation, allotment, and screening to name a few. Often these problems present alternatives where numerous conflicting constraints are to be considered while making a decision. The attributes associated are such that maximisation of one would lead to minimisation of others. Such problems have no absolute solution and require an optimisation of all the traits to present the best possible solution. This category of problems is known as Multiple Criteria Decision Making (MCDM) problems and various MCDM techniques are used to solve such dilemmas [1¨C3]. MCDM techniques can be broadly classified into two main categories mainly Multiple Objective Decision Making (MODM) and Multiple Attribute Decision Making (MADM) techniques. Both techniques are based on decision making under multiple criteria consideration but they differ slightly in their method of approach. MODM techniques require the knowledge of functional relationship that exists between various attributes associated with the alternatives. This relationship is used to formulate figure of merits (FOM) that are used to %U http://www.hindawi.com/journals/jcengi/2014/793074/