%0 Journal Article %T Survey and Challenges of QoE Management Issues in Wireless Networks %A Sabina Barakovi£¿ %A Lea Skorin-Kapov %J Journal of Computer Networks and Communications %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/165146 %X With the move towards converged all-IP wireless network environments, managing end-user Quality of Experience (QoE) poses a challenging task, aimed at meeting high user expectations and requirements regarding reliable and cost-effective communication, access to any service, anytime and anywhere, and across multiple operator domains. In this paper, we give a survey of state-of-the-art research activities addressing the field of QoE management, focusing in particular on the domain of wireless networks and addressing three management aspects: QoE modeling, monitoring and measurement, and adaptation and optimization. Furthermore, we identify and discuss the key aspects and challenges that need to be considered when conducting research in this area. 1. Introduction Wireless mobile communications have experienced phenomenal growth throughout the last decades, going from support for circuit-switched voice services and messaging services to IP-based mobile broadband services using High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), and Long-Term Evolution (LTE) Radio Access networks [1]. Increasingly, mobile applications and services are being used in daily life activities in order to support the needs for information, communication, or leisure [2]. Mobile users are requiring access to a wide spectrum of various multimedia applications/services without being limited by constraints such as time, location, technology, device, and mobility restrictions. This represents the outcome of the currently leading trend and future aim in the telecommunications domain: the convergence between fixed and mobile networks, and the integration of existing and new wireless technologies. Such integrations aim to satisfy mobile users¡¯ requirements in terms of providing access to any service, along with reliable and cost-effective communication, anytime and anywhere, over any medium and networking technology, and across multiple operator domains [3]. The ITU has specified the Next Generation Network (NGN) as a generic framework for enabling network convergence and realizing the aforementioned requirements [4]. The NGN concept is centered around a heterogeneous infrastructure of various access, transport, control, and service solutions, merged into a single multimedia-rich service provisioning environment. Today, an increasing number of mobile operators are migrating their networks in line with the 3GPP specified Evolved Packet System (EPS), consisting of a multiaccess IP-based core network referred to as the Evolved Packet Core (EPC), and a new %U http://www.hindawi.com/journals/jcnc/2013/165146/