%0 Journal Article %T High Resolution Software Defined Radar System for Target Detection %A S. Costanzo %A F. Spadafora %A A. Borgia %A H. O. Moreno %A A. Costanzo %A G. Di Massa %J Journal of Electrical and Computer Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/573217 %X The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6£żm. 1. Introduction Radar systems have been employed for a long time mainly in military operation, like target detection, target recognition, surveillance, and other specific applications, such as meteorology and air-traffic control. However, especially in the last recent years, new kind of large-scale commercial applications is requiring the standard radar system operations, but according to significant cost reduction and strong adaptability. Medical diagnostics and automotives are just some examples of the possible application fields. According to this new operating context, Software Defined Radar (SDRadar) could represent a new challenge in radar technology due to the possibility of performing most of the basic operations (i.e., mixing, filtering, modulation, and demodulation) by simply employing software modules in order to strike out most of the specific hardware [1]. The main goal of a software defined approach is related not only to a clear cost reduction, but also to a significant increase of the versatility of the system, since signal generation and signal processing parameters may be easily adapted on the fly to the task under consideration. New researches are recently conducted to implement a SDRadar for target distance detection [2, 3], but they are based on the use of sophisticated FPGA and/or DSP, thus being not able to guarantee the required cost reduction. A possible solution for a low cost SDRadar system development can be obtained by the adoption of the Universal Software Radio Peripheral (USRP) transceiver. A first attempt to apply USRP for target detection is %U http://www.hindawi.com/journals/jece/2013/573217/