%0 Journal Article %T A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT %A Cristian T. Badea %A Laurence W. Hedlund %A G. Allan Johnson %J Journal of Medical Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/581617 %X CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. 1. Introduction Clinical X-ray-based imaging using digital subtraction angiography (DSA) or computed tomography (CT) has highlighted the value of dynamic real-time acquisition for characterizing cardiac function and blood flow. Translating this imaging technology to preclinical studies has enormous potential to help study critical pathways in genetic models and to highlight potential concerns in drug safety evaluation. Therefore, one of the leading edges of X-ray-based preclinical imaging is the extension to faster scanning to allow collection of functional information such as in cine cardiac and perfusion studies. But small animal imaging poses formidable challenges that require both high spatial and temporal resolution. For example, the mouse heart has a diameter of about 5£żmm and has heart rates as high as 600 beats/minute. The lack of commercial systems suitable for such tasks prompted us to develop a dual source/detector X-ray imaging system to use for both micro-CT and DSA studies in rodents [1]. The control of such a complex imaging system requires substantial software development for which we used the graphical language LabVIEW (National Instruments, Austin, TX). A key benefit of LabVIEW over other development environments is the extensive support for accessing instrumentation %U http://www.hindawi.com/journals/jme/2013/581617/