%0 Journal Article %T Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing %A Benjamin Leporq %A Sorina Camarasu-Pop %A Eduardo E. Davila-Serrano %A Frank Pilleul %A Olivier Beuf %J Journal of Medical Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/471682 %X An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today. 1. Introduction Liver fibrosis is an important cause of mortality and morbidity and contributes substantially to increase health care costs in patient with chronic liver diseases [1]. Fibrosis can lead to cirrhosis, for which the complications such as hepatic decompensation, hepatocellular carcinoma, and portal hypertension involve growing public health concerns. Cirrhosis and chronic liver disease were the 10th leading cause of death for men and the 12th for women in the United States in 2001, leading to the death of about 27,000 people each year [2]. Cirrhosis was first considered as an irreversible process, but, with the growing understanding of hepatic fibrogenesis mechanisms, more effective treatments have been developed [3, 4]. However, the latter must be initiated at a specific and early stage in fibrous development, and their administration requires regular clinical followup. While histological analysis after liver biopsy is the gold standard for the diagnosis, inherent risk of a recognized morbidity and mortality renders this method unsuitable for clinical monitoring [5, 6]. Furthermore liver biopsies have other limitations such as interobserver variability and sampling errors [7]. It has been demonstrated that %U http://www.hindawi.com/journals/jme/2013/471682/